Exercise 84

Draw a diagram showing two perpendicular lines that intersect on the y-axis and are both tangent to the parabola $y=x^{2}$. Where do these lines intersect?

Solution

Consider two lines in the $x y$-plane.

$$
\begin{aligned}
& y=m_{1} x+b_{1} \\
& y=m_{2} x+b_{2}
\end{aligned}
$$

If the two lines are perpendicular, then

$$
m_{1}=m \quad \text { and } \quad m_{2}=-\frac{1}{m}
$$

And if these two lines have the same y-intercept, then

$$
\text { At } x=0: \quad m_{1} x+b_{1}=m_{2} x+b_{2} \quad \rightarrow \quad b_{1}=b_{2}=b .
$$

Consequently, the two lines are

$$
\begin{aligned}
& y=m x+b \\
& y=-\frac{1}{m} x+b
\end{aligned}
$$

Take the derivative of the parabola's equation.

$$
y^{\prime}=\frac{d}{d x}\left(x^{2}\right)=2 x
$$

Find the value of x that the first line is tangent to the parabola.

$$
m=2 x \quad \rightarrow \quad x=\frac{m}{2}
$$

Find the value of x that the second line is tangent to the parabola.

$$
-\frac{1}{m}=2 x \quad \rightarrow \quad x=-\frac{1}{2 m}
$$

Plug these values of x into $y=x^{2}$ to find the corresponding y-values on the parabola.

$$
\begin{aligned}
& y=\left(\frac{m}{2}\right)^{2}=\frac{m^{2}}{4} \\
& y=\left(-\frac{1}{2 m}\right)^{2}=\frac{1}{4 m^{2}}
\end{aligned}
$$

Plug these corresponding x - and y-values into the equations for the lines to determine m and b.

$$
\begin{aligned}
\left(\frac{m^{2}}{4}\right) & =m\left(\frac{m}{2}\right)+b \\
\left(\frac{1}{4 m^{2}}\right) & =-\frac{1}{m}\left(-\frac{1}{2 m}\right)+b
\end{aligned}
$$

Solving the system yields

$$
m=-1 \quad b=-\frac{1}{4}
$$

Therefore, the two lines are

$$
\begin{aligned}
& y=-x-\frac{1}{4} \\
& y=x-\frac{1}{4}
\end{aligned}
$$

and they intersect on the y-axis at $(0,-1 / 4)$. Below is a graph of these lines together with the parabola.

